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Abstract—Data loss in wireless sensing applications is inevitable 
and while there have been many attempts at coping with this 
issue, recent developments in the area of Compressive Sensing 
(CS) provide a new and attractive perspective. Since many physi-
cal signals of interest are known to be sparse or compressible, 
employing CS, not only compresses the data and reduces effective 
transmission rate, but also improves the robustness of the system 
to channel erasures. This is possible because reconstruction algo-
rithms for compressively sampled signals are not hampered by 
the stochastic nature of wireless link disturbances, which has 
traditionally plagued attempts at proactively handling the effects 
of these errors. In this paper, we propose that if CS is employed 
for source compression, then CS can further be exploited as an 
application layer erasure coding strategy for recovering missing 
data. We show that CS erasure encoding (CSEC) with random 
sampling is efficient for handling missing data in erasure chan-
nels, paralleling the performance of BCH codes, with the added 
benefit of graceful degradation of the reconstruction error even 
when the amount of missing data far exceeds the designed redun-
dancy. Further, since CSEC is equivalent to nominal oversam-
pling in the incoherent measurement basis, it is computationally 
cheaper than conventional erasure coding. We support our pro-
posal through extensive performance studies. 
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I. INTRODUCTION 

Data loss in wireless sensing applications is inevitable, ei-
ther due to exogenous (such as transmission medium impedi-
ments) or endogenous (such as faulty sensors) causes. While 
many schemes have been proposed to cope with this issue, the 
emerging area of compressive sensing enables a fresh perspec-
tive for sensor networks. Many physical phenomena are com-
pressible in a known domain and it is beneficial to use some 
form of source coding or compression, whenever practical, to 
reduce redundancy in the data prior to transmission. For exam-
ple, sounds are compactly represented in the frequency domain 
whereas images may be compressed in the wavelet domain. 
Traditionally, compression is performed at the application layer 
after the signal is sampled and digitized and typically imposes 
a high computation overhead at the encoder. This cost is the 
major reason that low-power embedded sensing systems have 

to make a judicious choice about when to employ source cod-
ing [14]. Advances in compressive sensing (CS) [5], however, 
have made it possible to shift this computation burden to the 
decoder, presumably a more capable data sink (e.g., a wireless 
sensor network’s base station), which is neither power nor 
memory bound. CS enables source compression to be per-
formed inexpensively at the encoder, with a slight sampling 
overhead1 and with little or no knowledge of the compression 
domain. 

Compression, however, also makes each transmitted bit of 
information more precious, necessitating a reliable transport 
mechanism to maintain the quality of information. To cope 
with channel disturbances, retransmission schemes have popu-
larly been applied, but they are inefficient in many scenarios, 
such as on acoustic links used for underwater communication 
[1], where round trip delays and ARQ traffic cost precious 
throughput. Retransmissions are ineffective in other cases too, 
for example, in multicast transmissions or when transmission 
latency is paramount for rapid detection. Forward error correc-
tion schemes like Reed-Solomon [15], LT [12] or convolution-
al codes are better suited for these scenarios, but their use in 
low-power sensing has been limited, primarily because of their 
computational complexity or bandwidth overhead [16].  

Fortunately, the computational benefits of CS coupled with 
its inherent use of randomness can make it an attractive choice 
for combating erasures as well. A key observation that makes 
this possible is that reconstruction algorithms for compressive-
ly sampled data exploit randomness within the measurement 
process. Therefore, the stochastic nature of wireless link losses 
and short-term sensor malfunctions do not hamper the perfor-
mance of reconstruction algorithms at the decoder. In fact, to 
the decoder, losses are indistinguishable from an a priori lower 
sensing rate. We, therefore, propose using compressive sensing 
as a low encoding-cost, proactive erasure coding strategy and 
show, in particular, that employing CS erasure coding (CSEC) 
has three desirable features: 

• CSEC is achieved by nominal oversampling in an incohe-
rent measurement basis. Compared to the cost of conven-
tional erasure coding that is applied over the entire data set 
from scratch, additional sampling can be much cheaper, 
especially if random sampling is used. The high cost of CS 
decoding is amortized over joint source and channel cod-
ing and is free, if CS was already being employed for 
source decompression.  

                                                           
1 CS sampling incurs a logarithmic overhead when compared 
to acquiring the signal directly in the compression domain. 
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• The performance of CS erasure coding with random sam-
pling is similar to conventional schemes such as Reed-
Solomon and, in general, the BCH family of codes, in that 
it can recover as many missing symbols for the same rela-
tive redundancy in a memoryless erasure channel. This as-
pect is covered in Sec. II.D. 

• CS erasure coding is robust to estimation error in channel 
loss probability. For example, if a BCH code of block size 
n were designed to correct up to t erasures, in a situation 
where e t>  erasures occur, the entire block of n symbols 
would be discarded. This implies that BCH codes must 
consider and be designed for a worst-case loss probability 
for recovery to succeed. An equivalent CS strategy, how-
ever, guarantees that even if e t>  symbols are lost, the best 
approximation of the signal is reconstructed from the re-
maining n e−  symbols. This means that even if channel 
coding fails at the physical layer, CSEC can recover the 
signal at the application layer. 

Despite its advantages, CS erasure coding is not intended as 
a replacement for traditional physical layer channel codes. It is 
neither as general-purpose (i.e. it cannot be used for arbitrary 
non-sparse data), nor is the decoding as computationally effi-
cient (yet). Instead, CSEC should be considered as a coding 
strategy that is applied at the application layer, where it utilizes 
knowledge of signal characteristics for better performance. In 
this regard, it is the reduced encoding cost that makes CSEC 
especially attractive for low-power embedded sensing. We 
quantify its energy efficiency benefits in Sec. III.C. 

We highlight the conventional and proposed approaches in 
Figs. 2 and 1 respectively. Notation used in the figures is intro-
duced in the Sec. II. Typically, source coding is performed 
after the signal is completely acquired, removing redundancy 
in the samples through a lossy or lossless compression routine. 
This step is performed at the application layer and utilizes 
known signal models to determine the most succinct represen-
tation domain for the phenomenon of interest. The compressed 
data is then handed to the communication protocol stack, where 
just before transmission, usually at the physical layer, the data 
may be encoded again to introduce a controlled amount of re-
dundancy. If transmitted symbols are received in error or not at 
all, the decoder may be able to recover the original data using 
this extra information.  

If, on the other hand, compressive sampling were to be em-
ployed for joint source and channel coding, the sampling stage 
would itself subsume the coding blocks. CS sampling uses one 
of a variety of random measurement techniques that ensure that 
sufficient unique information is captured by the sampling 
process with high probability. We propose that the CS sam-
pling block should be designed not merely to include prior 
knowledge of signal characteristics in terms of its sparsity in a 
specific domain, but consider channel characteristics as well. In 
particular, we propose tuning the sampling process, e.g., 
through judicious oversampling, to improve the robustness to 
channel impairments. We show in Sec. II.D that the universali-
ty of compressive sensing to the sparsity domain extends to the 
channel model as well, making CSEC advantageous even when 
channel characteristics are not precisely known. In particular, 
we will see in Sec. III.B that signal reconstruction performance 
with CSEC degrades gracefully when the average sampling 
rate at the acquisition stage is insufficient for exact recovery.  

II. COMPRESSIVE SENSING FOR ERASURE CODING 

The problem we seek to address is acquiring a length n sig-
nal vector nf ∈!  at a sensor node and communicating a length 
k measurement vector kz ∈!  such that f  can be recovered 
accurately at a base station one or more wireless hops away. 
We assume a generic wireless sensing application, where the 
signals are sparse or compressible in a known domain, and the 
data is collected centrally at a capable base-station. To con-
struct our argument, we first briefly discuss both channel cod-
ing and compressive sensing. We then propose a compressive 
coding strategy in which oversampling suffices for robust data 
transmission.  

A. Channel Coding Overview 
If we consider a simple sense-and-send scenario where we 

send the sensed signal nf ∈!  to a base station over an unrelia-
ble communication channel, z f=  and k n= . However, if a 
channel coding function c!  is applied prior to transmission, 

( )cz f= !  and since channel coding increases the average 
transmission rate by adding redundancy, k n≥ . Consider a li-
near channel coding function z f= Ω , where k n×Ω ∈!  is the 
equivalent channel coding matrix. When z  is transmitted 
through a lossy channel, some measurements may not be re-
ceived at the other end. We define the received measurement 
vector z′ of length k k e′ = − , where e is the number of erasures. 
The channel may also be modeled as a linear operator k k×′∈C !  
so that z z′ =C . In general, C can consist of any values, but for 
the class of erasure channels we consider here, C is a sub-
matrix of an identity matrix kI , where e rows have been omit-
ted. Recovering the original signal from the received data is 
then a decoding operation of the form: 

 ( )f̂ z+= Ω ′C , (1) 

where, ( ) 1T TX X X X
−+ =  is the Moore-Penrose pseudoinverse. 

If ΩC  is full rank, the decoding will be successful, else, the 
signal f  cannot be recovered and the measurement vector z′ is 
discarded. Based on the application, the encoder may either re-
send z  or may re-encode f  with a higher redundancy code be-
fore retransmitting.  

We would like to emphasize a property of erasure channels 
and linear coding here. Data that is missing from vector z  is 
caused by the channel matrix C, which is generated by omitting 

 
Figure 1. Proposed joint source-channel coding using compressive sensing. 

 
Figure 2. The conventional sequence of source and channel coding. 



 

 

rows from an identity matrix kI  at the indices corresponding to 
the missing data. But, since z  is formed using z f= Ω , one may 
instead view the combined coding and loss process as one of 
coding alone, where Ω′ = ΩC  is the equivalent coding matrix 
generated from Ω  by omitting k k− ′ of its rows at the indices 
corresponding to the lost data. This means that missing data at 
the receiver can be considered the same as not having those 
rows in Ω  to begin with. We will use this perspective later 
when we discuss properties of compressive sensing. 

Now, if we knew that the signal f  contained redundancy, 
we could have compressed it before channel coding. We 
represent f  using a sparse vector nx ∈! , by transforming it 
through an ortho-normal basis n n×Ψ ∈!  using f x= Ψ . For 
example, if f  was an acoustic waveform and Ψ was the inverse 
FFT basis operator, x would be the Fourier coefficients of the 
waveform. In the traditional (lossy) source-channel sequential 
coding process, the largest m, where m n" , coefficients of x 
would be passed to the channel encoder. Let y x= R  be the 
input to the channel coder, where nm×∈R !  is sub-matrix of nI  
that defines the indices of x selected for transmission. The out-
put at the sensor node would then be 1 fz y −Ω = Ω Ψ= R , where 
Ω  is now of size k m× . At the receiving end, the channel de-
coder first recovers ŷ and thus x̂ using (1) (replacing f̂  with ŷ) 
and then ˆ ˆf x= Ψ . 

B. Compressive Sensing Fundamentals 
The theory of compressive sensing asserts that the explicit 

compression step 1x f−= Ψ  does not need to be performed at 
the encoder and that a much smaller ‘incoherent’ transforma-
tion may be performed instead. We consider a sensing matrix 

m n×Φ ∈!  that generates ( )m m n"  of these incoherent mea-
surements directly by projecting the signal f  in its native do-
main2 through y f= Φ . In the usual synchronous sampling re-
gime, Φ  is an identity matrix mΙ  and m n= . When employing 
compressive sensing, however, the sensing matrix may be gen-
erated pseudo-randomly using various statistical distributions 
that ensure that sufficient unique information is captured with 
high probability. The questions that CS theory answers are: 
How can f  be recovered from y? How many measurements m 
are required for accurate recovery and what sensing matrices Φ  
facilitate recovery? We summarize some key results from [4] 
and references therein. 

The foundational argument behind compressive sensing is 
that although Φ  is not full rank, x and hence f  can be ‘de-
coded’ by exploiting the sparsity of x coupled with the sparsity 
promoting property of the 1#  norm. To accomplish this, we 
view y as being generated through y x x= ΦΨ = A  instead of 
through y f= Φ . Now, while there are infinitely many solutions 
to y x= A , the CS reconstruction procedure selects the one with 
the least sum of magnitudes by solving a constrained 1#  mini-
mization problem [7]: 
 

1
ˆ arg min s.t.

x
x x y x= = A#$

$ $, (2) 

                                                           
2 The native domain for typical analog-to-digital conversion is 
time, but in some cases like photonic ADCs [3], sampling oc-
curs in the frequency domain. 

where,  
1

1

n

i
i

x x
=
!# %  and, f  is recovered using ˆ ˆf x= Ψ  as be-

fore. To guarantee that the solution from (2) is exact, a notion 
termed the restricted isometry property (RIP) was introduced. 
We will return to the RIP shortly, but first explain how the 
above procedure could be extended to handle missing data. 

C. Handling Data Losses Compressively 
Since the compressively sampled measurements in y are a 

compact representation of f , a valid scheme to protect y from 
channel erasures would be to feed it to a channel coding block 
as before. Thus, the sensor would now emit the coded mea-
surements z y f= Ω = ΩΦ , with Ω  being of size k m×  (k m> ). 
At the receiver, recovering f  proceeds by first recovering ŷ 
from z z′ = C  using (1) and then x̂ using (2), if channel decoding 
succeeds.  

If we consider each step in the above process, we see that 
compressive sampling concentrated the signal information in a 
set of m measurements and then channel coding dispersed that 
information to a larger set of k measurements. A natural ques-
tion to ask is how the dispersion scheme differs in essence 
from the concentration scheme and whether they can be uni-
fied. The answer to this question is the crux of this paper. 

We argue that compressive sensing not only concentrates 
but also spreads information across the m measurements ac-
quired. This perspective is backed by Theorem 2 (below) and is 
the primary reason for the logarithmic rate overhead expe-
rienced by CS practitioners. Based on this observation, we pro-
pose that, an efficient strategy for improving the robustness of 
data transmissions is to augment the sensing matrix Φ  with e 
additional rows generated in the same way as the first m rows. 
These extra rows constitute extra measurements, which, under 
channel erasures will ensure that sufficient information is 
available at the receiver. Note that oversampling in the native 
domain of f  is also a valid strategy, but is highly inefficient. 
On the other hand, we will show next that if k m e= +  incohe-
rent measurements are acquired through “compressive over-
sampling” and e erasures occur in the channel, the CS recovery 
performance will equal that of the original sensing matrix with 
a pristine channel with high probability (w.h.p.). We denote the 
augmented sensing matrix as k n×Φ ∈!  and the samples re-
ceived at the decoder would be z f′ = ΦC . The decoding and 
recovery procedures for this case are now performed in one-
step using (2), but constrained by z′ (instead of y′) to incorpo-
rate augmentation and losses: z x x x′ = ΦΨ = = ′C CA A . 

To understand intuitively why such an approach might 
work, assume that both Φ  and Φ  are generated randomly with 
each element being an instance of an i.i.d. random variable. 
From our earlier discussion on viewing missing measurements 
as missing rows in the coding matrix, we observe that with 
k m e= +  and e missing measurements, Φ′ = ΦC  would be of 
size m n× . Now, since each element of Φ  is i.i.d. and the era-
sure channel does not modify its value, we can view Φ′ as be-
ing generated with m rows to begin with, just like Φ . So, while 
Φ  and Φ′ will not be identical, their CS reconstruction perfor-
mance, which depends on their statistical properties and their 
size, will be equal (with high probability). We explain this ana-
lytically in the following section. 



 

 

D. Robustness of CSEC to Erasures 
We can show that CS oversampling is not only a valid era-

sure coding strategy, but also an efficient one. In particular, we 
would like to show that if we augment the sensing matrix to 
include e extra measurements and any e from the set of 
k m e= +  measurements are lost (randomly and independently) 
in transmission, the performance of CS reconstruction is equal 
to that of the original un-augmented sensing matrix (with high 
probability). To accomplish this, we rely on results from com-
pressive sensing theory. We define the restricted isometry con-
stant sδ  of a matrix = ΦΨA  and reproduce a fundamental re-
sult from [4] that links sδ  to CS performance. 
Definition 1. [4] For each integer =1,2,...s , define the isometry 
constant sδ  of a matrix A  as the smallest number such that: 

 
2 2 2

2 2 2(1 ) (1 )s sx x xδ δ− ≤ ≤ +A# # #  (3) 

holds for all s-sparse vectors x. A vector is said to be s-sparse if 
it has at most s non-zero entries. 
Theorem 2. [4] Assume that 2 2 1sδ < −  for some matrix A , 
then the solution x̂ to (2) obeys: 
 

1 1
0ˆ · sx x C x x− ≤ −# #  (4) 

 
2 1

0ˆ · s
C

x x x x
s

− ≤ −# #  (5) 

for some small positive constant 0C  and sx  is an approximation 
of a non-sparse vector with only its s-largest entries. In particu-
lar, if x is s-sparse, the reconstruction is exact. 

This theorem not only guarantees that CS reconstruction 
will be exact if 2 ) 2( 1sδ < −A  for an s-sparse signal, but also 
that if x is not s-sparse, but is compressible, with a power-law 
decay in its coefficient values, 1#  minimization will result in the 
best s-sparse approximation of x, returning its largest s coeffi-
cients. We will return to this property when we compare the 
performance of CSEC with traditional erasure coding. Note 
also, that this is a deterministic result. 

CS theory also suggests mechanisms to generate A  matric-
es that satisfy the RIP with high probability. For example, it 
has been shown in [7] that the matrix A  can be constructed 
randomly using i.i.d. random variables, with a Gaussian 

(0,1 )ijA n= !  distribution or an equi-probable Bernoulli 
1ijA n= ±  distribution. Using such matrices in low-power 

sensing devices, however, is difficult since implementing the 
sensing matrix 1−Φ = ΨA  involves sampling and buffering f  
and computing y f= Φ  explicitly through complex floating 
point operations. It was also shown in [7] and [16] that if A  is 
constructed by randomly selecting rows of a Fourier basis ma-
trix, the number of measurements obeys: 

 2 4·
log ( )

ms C
n

≤  (6) 

with high probability. This is a significant result indeed be-
cause it implies that, if the signal is sparse in the Foureier do-
main, 1−Φ = ΨA  is essentially an m n×  random sampling matrix 
constructed by selecting m rows independently and uniformly 
from an identity matrix nI . This Φ  is trivially implemented by 
pseudo-randomly sampling f , m times and communicating the 
stream of samples and their timestamps to the fusion center. 
Matrix Φ  can then be recreated at the fusion center from the 

timestamps. The limitation on Ψ being the Fourier basis was 
removed in [16], which showed that the bound in (6) extends to 
any dense ortho-normal basis matrix Ψ with uniform random 
sampling. 

Assume that the transmission channel can be modeled us-
ing an independent Bernoulli process with mean loss probabili-
ty p. Thus, the likelihood of any measurement being dropped 
in this memoryless erasure channel is equal and is p. To show 
now that CSEC with random sampling is efficient for this 
channel model, we need to show that reconstruction perfor-
mance with = ΦΨA , where m n×Φ ∈!  and ′ = ΦΨA C , where 

k n×Φ ∈!  is equal with high probability when (1 )k m p= − . 
The factor 1 p−  denotes the ratio of measurements lost in the 
channel. However, note that since Ψ is an ortho-normal basis 
matrix, it is equivalent to show that sensing performance with 
Φ  and Φ′ = ΦC  is identical w.h.p. 

Our approach considers the Fourier random sampling strat-
egy, which constructs a Φ  matrix by selecting samples from f  
at random. For the bound in (6) to hold for matrix Φ , two con-
ditions need to be met: 

a) At least m samples need to be selected 
b) The indices should be selected using a uniform random 

distribution so that each sample is equi-probable. 
To show that Φ′ results in identical performance (w.h.p.) to 

Φ , we need to show that the above conditions hold equally. We 
first show that Φ′ satisfies condition (b). When the channel is 
memoryless with a loss probability p, an average of ·k p sam-
ples are lost in transmission and only k′ samples are received. 
Let Φ"  denote the set of sample indices that were selected using 
y f= Φ  for the random sampling case. Therefore, the cardinali-
ty of Φ"  would be mΦ =" . Similarly, let the set of indices cho-
sen in Φ  be labeled as Φ"  and the sample indices received by 
the decoder be ΦC" , where kΦ ="  and kΦ = ′C" . Since Φ  is con-
structed randomly and uniformly, the probability of a sample i 
being selected from f  is: 

 Pr | mi m
nΦ Φ" ∈ = # =$ %" "  (7) 

and for the oversampling case is: 

 Pr | ki k
nΦ Φ" #∈ = =$ %" "  (8) 

Claim 3. If we transmit k randomly chosen samples over an 
independent Bernoulli channel with a probability of lost trans-
mission over the channel as p, the probability of the i th sample 
of f  being received in the k′ samples is: 

 Pr | ki k
nΦ Φ
′" #∈ = ′ =$ %C C" "  (9) 

Proof. This result is intuitive and straightforward to prove. 
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This means that, if the channel is modeled as an indepen-
dent Bernoulli process and the input sample distribution is 
equiprobable over n samples, the output index distribution is 
also equiprobable over the set of correctly received samples. 
This proves condition (b). If we increase the number of sam-
ples by the ratio lost in the channel such that (1 )k m p= − , 
then [ ]E k m′ =  and condition (a) is satisfied as well: 

Pr | Pr | mi k i m
nΦ ΦΦ Φ" #∈ = ′ = " ∈ = # =$ %$ %C C" " " "  (10) 

We, therefore, conclude that the sample indices in Φ′ are 
statistically indistinguishable from the indices in Φ  for a me-
moryless channel and that the bound for the required number of 
measurements holds equally (with high probability).  

E. CSEC Reconstruction when Redundancy is Insufficient 
While the above result indicates that signal recovery using 

CSEC is exact if the redundancy k m−  is higher than the num-
ber of erasures k k− ′, it can also be shown that when k m′ < , 
recovery can still proceed but results in an approximation of 
the signal. This is in contrast to traditional erasure coding 
schemes that necessitate that the matrix ΩC  be invertible for 
any reconstruction to occur. To prove this we use Thm. 2 when 
applied to compressible signals. Assume that the signal of in-
terest f  in its compressed form x has its ordered coefficients 
decaying according to a power law such that 

( )
·rl

rCx l−≤ , 
where 

(0) (1) ( )n
x x x≥ ≥ ≥&  and 1r ≥ .  

Assume also that the bound in (6) is satisfied in equality for 
some choice of m and s. Now, when k m′ < , k′ does not meet 
the bound for sparsity s. However, k′ is guaranteed to satisfy 
the bound for some lower sparsity s s′ ≤  (by extension from 
[16]). For the set of k′ measurements received, Thm. 2 guaran-
tees that CS reconstruction will result in the best s′-sparse ap-
proximation of x, returning its largest s′ coefficients. This im-
plies, then, that the increase in the 1#  norm of the reconstruction 
error with k′ measurements will be limited to 

1
0 s sxC x ′≤ − ##  

with high probability. We empirically study the effect of this 
reconstruction error on the probability of recovery in Sec. III.B. 

III. EVALUATION RESULTS 

In order to verify the performance of compressive erasure 
coding, we analyze the sampling matrix ′A  that identifies 
which measurements were received at the decoder.  

A. Verifiable Conditions using RIP 
1) For a Memoryless Erasure Channel  

We model the erasure introduced by the transmission chan-
nel with an average measurement loss probability, p. We in-
itially assume an independent Bernoulli process. The question 
we would like to address is how the loss of ·k p measurements 
dropped (on the average) affects CS reconstruction. From Thm. 

2, we understand that reconstruction accuracy depends on the 
RIP constant 2sδ  of A . To evaluate the extent of performance 
loss through the erasure channel, we can thus rely upon quanti-
fying ( )sδ A . Computing ( )sδ A  exactly from Def. 1, however, is 
exhaustive because it is defined over all s-sparse vectors. We 
approximate it by evaluating the eigenvalues of its Grammian 
[2] over 310  random s n×  sub-matrices. Increasing this number 
to 610  results in little improvement. 

We first generate a random sampling matrix = ΦΨA  of 
size m n×  as described in Sec. II.B. This sensing matrix is mod-
ified by the channel so that ′ =A CA. We also have an aug-
mented sensing matrix generated at the source = ΦΨA  of size 
k n×  with k m>  and its received counterpart ′ =A CA. Testing 
the performance of CSEC numerically then proceeds by com-
paring whether ( ) ( )s sδ δ′ ≤A A . Equality ensures that the CS 
decoder would be able to achieve reconstruction accuracy iden-
tical to an un-augmented sensing matrix with a pristine chan-
nel. If ( ) ( )s sδ δ′ <A A , it means that the decoder has more mea-
surements through ′A  than through the original A  and would 
lead to a higher probability of exact recovery.  

The result from this calculation for a Monte Carlo simula-
tion over 1000 256 1024×  random sampling matrices with the 
Fourier basis for reconstruction is shown in Fig. 3. The dotted 
blue curve labeled “No Loss” indicates ( )sδ A  forming the 
baseline for our comparison. The shading illustrates the min-
max values over all choices of Φ . With loss probability 

0.2p = , we see a mean increase in RIP constant, which implies 
that the sparsity for guaranteed 1#  reconstruction drops. In this 
case, we see that the sparsity drops from about 6 to 4 based on 
the 2 2 1sδ < −  bound (gray horizontal line) from Thm. 2. 
Note, though, that while this bound is known to be conserva-
tive, enumerating the RIP constant in this way clearly indicates 
the loss in reconstruction accuracy that may be expected by 
losing 20% of the sampled measurements. 

From Clm. 3, we see that the probability distribution of in-
dices extracted from Φ  and Φ′ = ΦC  are identical when C 
comes from a memoryless (independent Bernoulli) channel. 
This means that, if the channel is not congested, increasing the 
sensing rate by a factor of (1 )p p−  will restore the delivery 
rate to k m′ =  on average. The effect of this increase is substan-
tiated in Fig. 3 and establishes ( ) ( )s sδ δ′ ≈A A  for the indepen-
dent Bernoulli channel. We see that not only does the mean 
RIP constant improve to its original value but that the range of 
variation also recovers to the “No Loss” baseline. Note also, 
that the minimum values of ( )sδ ′A  are below ( )sδ A  suggesting 
that some instances of Φ  coupled with channel loss actually 
deliver better-than-baseline performance. 

To compare performance across different sampling 
schemes, we further evaluate the RIP constant for a sensing 
matrix that is constructed using the Gaussian random projec-
tion method described earlier. In this case, the reconstruction is 
performed in the identity domain with = ΦA . It has been 
shown in [7] that the Gaussian projection technique has equiva-
lent performance across any ortho-normal reconstruction basis 
and the identity matrix was chosen for computational ease. The 
result of this computation is shown in Fig. 4 for a memoryless 
lossy channel with 0.2p = . Here too, we observe that while the 
RIP constant is higher in the lossy case, increasing the rate by 



 

 

the amount lost in the channel recovers the performance guar-
anteed by compressive sensing.  

2) Interleaving for Bursty Channels 
Realistic wireless channels exhibit bursty behavior [17]. To 

estimate the effect of CSEC performance with bursty channels, 
we use the popular Gilbert-Elliott (GE) model [10], which is 
both tractable to use and accurate in describing many wireless 
channels (including those in mobile environments [18]). GE 
channels are modeled using a stationary discrete-time binary 
Markov process. Within each state, marked good and bad, the 
probability of loss is assumed to be 0gp =  and 1bp =  respec-
tively. The probability of transition from one state to another is 
marked as gbp  and bgp . To maintain consistency with the me-
moryless channel performance studies, we compute transition 
probabilities from average loss probability p and expected 
burst size b using standard relationships: 1bgp b=  and 

( (1 ))gbp p b p= − . 
Fig. 6 shows the RIP constant sδ  at loss probability at 
0.2p =  and with an expected loss burst of 8b =  samples. While 
8b =  constitutes an extreme condition of burstiness, it is in-

structive to see its effects on CS recovery. Thus, the same 
number of samples is delivered to the fusion center as with the 
memoryless channel on average, but with a modified index 
distribution. The effect of this change is immediately evident in 
the variation of sδ  in Fig. 6 indicating that some sensing ma-
trices are particularly bad for a GE channel. While an increase 
in sensing rate improves the mean RIP constant (though not 
reaching the baseline), the variance remains quite high.  

The variance issue can be resolved by applying randomized 
interleaving prior to transmission, which results in a roughly 
uniform distribution of the sample losses [13]. It can be shown 
that interleaving recovers the original index distribution (up to 
a bound) for random sampling and the green dotted curve 

(coincident with the baseline) in Fig. 6 illustrates this empiri-
cally. Note, however, that interleaving requires buffering y 
(though not f ), which increases decoding latency. Interesting-
ly, we observe that the Gaussian random projection technique 
in Fig. 5 is unaffected by interleaving. In fact, using Gaussian 
projections delivers near baseline performance with or without 
interleaving (min-max variation is not perfect). This is because 
the sensing matrix Φ  is dense (compared to the one for random 
sampling) with each element within it being i.i.d Gaussian. 
This means that every measurement in y has a random, inde-
pendent but statistically identical contribution from every ele-
ment in f . Since interleaving the measurements y is equivalent 
to shuffling the rows of the matrix Φ , interleaving does not 
affect the statistical properties of Φ .  

A more extensive treatment of this “democratic” property 
of Gaussian sensing matrices can be found in a recent report by 
Davenport, et al. [24], which analyses the performance from a 
theoretical perspective. The democracy argument has been 
employed in [25] for the novel application of handling satura-
tion errors in analog-to-digital quantizers, in a fashion similar 
to what we propose in CSEC.  

B. Signal Reconstruction Performance 
Evaluating the RIP constant provides theoretical insight in-

to what the performance gain would be when using CSEC. In 
this section, we study the practical implications by evaluating 
the probability exP  with which CSEC could deliver the original 
signal exactly. We do this by performing a Monte-Carlo simu-
lation over 410  random instances of a length 256 sparse signal 
and computing how often CS erasure coding results in exact 
recovery. Figs. 7 to 11 illustrate the comparative performance 
of using Fourier random sampling (left) and the Gaussian pro-
jection method (right) for CSEC. For each plot, the “No Loss” 
curve indicates the baseline with 64m =  (4:1 compression) and 

Figure 3. RIP constant for random sampling with a memoryless channel. 

Figure 4. RIP constant for Gaussian projections with a memoryless channel. Figure 5. RIP constant for Gaussian projections with a Gilbert-Elliott channel.

Figure 6. RIP constant for random sampling with a Gilbert-Elliott channel. 



 

 

the “Loss” curve indicates the probability when no over-
sampling is performed. The “CSEC” (red) curve indicates exP  
with compressive oversampling at (1 )k m p= −  and the two 
“CS” curves indicate intermediate values with 

(1 )m k m p< < − . The x-axis indicates the number of non-zero 
coefficients in x. 

 Three channel models have been used to generate these 
figures. Figs. 7 and 8 mimic the channel model used in Figs. 3 
and 4, a memoryless erasure channel modeled as an indepen-
dent Bernoulli process with 0.2p = . We see for both Fourier 
random sampling and Gaussian projections that, when 

· 16kk k p′ = =−  measurements are lost on the average, 
(1 ) 80k m p= − =  recovers performance to the original 64m =  

level. Observe that if the bound in (6) is not met (beyond about 
10s = ), the performance for a particular k drops gradually with 

s. Note, also, that exP  decays quicker to 0 in the case of Gaus-
sian projections and, we see while comparing with Figs. 3 and 
4, this is because the RIP constant is also higher for the latter. 
The intermediate values of k ( 69k =  and 75k = ) in both cases 
deliver intermediate levels of quality as predicted in Sec. II.E.  

Figs. 9 and 10 use the same Gilbert-Elliott channel model 
as Figs. 6 and 5 with 0.2p =  and 8b = . It is striking to note that 
due to the burstiness of the channel, the performance of neither 
Fourier random sampling nor Gaussian projections reaches the 
baseline for low sparsity levels. Further, while the highest s for 
which 1exP =  has gone down substantially for the lossy scena-
rios, the slope of the exP  curve is also reduced. The reason for 
this is that the distribution of received sample lengths, k′, 
across the Monte-Carlo runs is skewed and asymmetric about 
the mean for bursty channels, whereas it is symmetric about 

(1 )k p−  and is Gaussian for a memoryless channel. As an ex-

ample, the mean value of k′ for CSEC across runs is 64kµ ′ ≈  
for both the Bernoulli channel and the GE channel but their 
standard deviations are 3k

Bernσ ′ ≈  and 10k
GEσ ′ ≈  respectively. 

It’s interesting, though; the sample length distribution is 
skewed toward higher k′ and the result is that the probability of 
reconstruction at larger sparsity levels is actually higher than 
the baseline. An unexpected result from Fig. 9 is that interleav-
ing makes little or no difference to Fourier random sampling. 

Fig. 11 has been generated using a wireless network trace 
from the CRAWDAD database [11], which provides extensive 
network performance datasets collected from a wide array of 
conditions. The particular trace we selected used sensor nodes 
with an IEEE 802.15.4 radio transceiver placed about 12m 
apart between two different floors of a university building. This 
trace had the highest loss probability and burstiness across the 
27 traces collected with 0.15p ≈  and 1.2b = . We built a GE 
channel model based off the trace and simulated the probability 
of exact recovery as before. There is very little burstiness in the 

Figure 7. Probablity of recovery for random sampling with a memoryless 
erasure channel. 

Figure 8.  Probablity of recovery for Gaussian projections with a memoryless 
erasure channel. 

Figure 9.  Probablity of recovery for random sampling with a Gilbert-Elliott 
channel model. 

Figure 10.  Probablity of recovery for Gaussian projections with a Gilbert-
Elliott channel model. 

Figure 11.  Probablity of recovery for random sampling with a real 802.15.4 
channel using GE model. 



 

 

channel and Fig. 11 shows that CSEC will be able to deliver 
near baseline performance with either Fourier random sam-
pling or Gaussian projections (the plot for Gaussian projections 
was omitted since it was identical to Fig. 8). 

C. CSEC Implementation Costs 
We can quantify the energy efficiency gains that CS prom-

ises too. In particular, we use random sampling with 256n =  
and compare it to two cases – first, where a standard (255,223) 
Reed-Solomon (RS) [15] code, a popular BCH code, is applied 
to a set of 256 raw 16-bit samples and second, where RS is 
applied to a compressed version of the signal. We assume the 
signal is sparse ( 10s ≤ ) in the Fourier domain and use 256-
point FFT for source compression. Fig. 13 shows this compari-
son, which also includes energy consumption costs without RS. 
The data has been extracted using a cycle and energy accurate 
instruction-level simulator [21] available for the popular MicaZ 
sensor platform. While the analysis is specific to this platform, 
the insight from these results can be applied more generally.  

We have split the costs among five blocks, which are sig-
nificant for the comparison – random number generator (for 
CS), ADC, FFT processing, radio transmission and Reed-
Solomon coding. The total energy consumption of sample-and-
send and compress-and-send is almost equal without RS, with 
the radio taking a large chunk of the former and the FFT rou-
tine consuming half of the latter. Notice also, that the ADC 
energy consumption is substantial since both these techniques 
need to operate on the entire signal vector. On the other hand, 
the CS routine at 64m =  (4:1 compression) requires a fraction 
of the ADC and radio, but incurs an overhead for generating 
random numbers. The current implementation uses an inexpen-
sive 16-bit LFSR for pseudo-random number generation.  

When the data is RS encoded before transmission, the ener-
gy consumption of the sample-and-send strategy jumps consi-
derably, whereas the increase for compress-and-send is neglig-
ible, because it is sending at most 10 coded symbols (with 6 
parity symbols). We chose 10s ≤  since that is the threshold 
below which 64m =  in the lossless case and 80k =  for a me-
moryless erasure channel result in exact CS recovery (refer 
Figs. 7 and 11). This means that, with a 0.2p =  memoryless 
channel, all three strategies on the right will deliver equivalent 
recovery performance. When comparing encoding cost, how-
ever, CS erasure coding is 2.5× better than performing local 
source compression and 3× better than sending raw samples. 

IV. RELATED WORK AND DISCUSSION 

Recovering from erroneous and missing data in communi-
cation systems employ ARQ retransmissions and forward error 
correction (FEC) routinely, sometimes simultaneously, at dif-
ferent layers of the communication protocol stack.  For sensor 
networks, however, the simplicity of ARQ has retained it as the 
dominant form of error recovery. Many researchers have ques-
tioned this recently and evaluated FEC techniques through lab 
experiments. 

For example, Schmidt, et. al. [20] focused on convolutional 
coding to show that a modified Turbo code is quite feasible on 
a MicaZ platform. While they report that the energy consump-
tion using Turbo codes is about 3.5× of its un-coded counter-
part, the overall energy efficiency is better considering re-
transmission costs, especially on high loss links. They also 
show that the computational complexity of Turbo encoding is 
practical, but only with low-rate data transfers (they tested with 
one packet every second). Jeong, et. al [19] proposed using a 
simpler error correcting code for only single and double-bit 
errors to reduce this computation burden. They illustrate, 
through experimental data that long error bursts are rare in stat-
ic sensor networks and argue that the complexity of RS or LT 
codes is unwarranted. They show that their error correcting 
code reduces the packet drop rate almost to zero for outdoor 
deployments. However, due to a higher frequency of multiple-
bit errors indoors, recovery remains imperfect there. We’ve 
shown that CSEC can provide both computational benefits and 
recovery performance that parallels state-of-the-art erasure 
correcting codes. To use CSEC, however, one must have a 
good understanding of the physical phenomena being acquired 
and the domain it can be compressed in. 

Further, Wood, et. al. [22] recently reported the use of on-
line codes in low-power sensor networks. Online codes are a 
form of digital fountain codes, such as the LT codes [12], but 
are simpler to encode and decode. They propose a lightweight 
feedback mechanism that allows the encoder to cope with vari-
ations in link quality rapidly and efficiently. They point out, 
however, that multiple parameters need to be tuned in order for 
the coding to be efficient. This is similar to the sensitivity of 
LT codes to the degree distribution [12]. While our current 
work has focused on block wise decoding and makes analogies 
to other linear block coding strategies such as BCH codes, 
CSEC can be used in a “rateless” mode as well, similar to 
fountain codes. Asif, et al. [23] demonstrate a way of streaming 
incoherent measurements and describe a homotopy based ap-
proach that performs iterative decoding as measurements are 
received. Using this technique, while exploiting the democracy 
property of sensing matrices [24], a stream of measurements 

 
Figure 12. Comparison between received sample length distributions resulting 

from transmission through memoryless and Gilbert-Elliott channels. 

Figure 13. Energy consumption comparison for different sampling strategies 
(form left to right: Sample-and-Send (S-n-S), Compress-and-Send (C-n-S), 

Compressive Sensing (CS), S-n-S with Reed-Solomon encoding, C-n-S with 
Reed-Solomon encoding and CS Erasure Coding by Oversampling). 



 

 

that is transmitted through an erasure channel can be progres-
sively decoded as measurements are gradually received.  

We have described CSEC for handling erasures in a chan-
nel, but CSEC can be extended to correct for errors in the sen-
sor transduction process too. This means that a controlled 
amount of sensor noise can be cleaned from the acquired mea-
surements during the decompression process. This is achieved 
by using Basis Pursuit De-noising [8], which changes the 
equality constraint in (2) to an inequality to account for varia-
tions due to noise. Note, however, that since CSEC utilizes 
features of the physical phenomenon and operates on the ac-
quired signal, and not on the modulated symbols transmitted 
through the wireless channel, CSEC is not useful for correcting 
symbol errors at a communication receiver. A better approach 
to tackling the latter using 1#  minimization techniques is dis-
cussed by Candes and Tao in [6]. 

In Sec. III.A, we used the RIP constant of the sensing ma-
trix as way of verifying its reconstruction performance. Anoth-
er technique that was recently proposed, namely the null-space 
property [9], could also have been used. Until much recently, 
however, the null-space property was as difficult to compute as 
the RIP constant. In the future, we will not only use the null-
space property for evaluating sensing matrices numerically but 
also study its use to analyze the recovery properties of CSEC, 
especially with Gaussian projections. 

And finally, we note that the evaluation studies in Sec. III 
assumed that measurements are streamed to the receiver as 
they are acquired. If one packetizes the measurements for 
transmission, in a memoryless channel, the sample losses will 
no longer be independent and instead show high burstiness. An 
example of this is shown in Fig. 14, which shows the probabili-
ty of recovery when 8 measurements are transmitted in every 
packet. We defer a detailed study of the effects of packetization 
in realistic wireless channels for future work. 

V. CONCLUSION 
We have explored the application of Compressive Sensing 

to handling data loss from erasure channels by viewing it as a 
low encoding-cost, proactive, erasure correction scheme. We 
showed that CS erasure coding is efficient when the channel is 
memoryless and employed the RIP to illustrate, that even ex-
treme stochasticity in losses can be handled cheaply and effec-
tively. We showed that for the Fourier random sampling 
scheme, oversampling is much less expensive than competing 
erasure coding methods and performs just as well. This makes 
it an attractive choice for low-power embedded sensing where 
forward erasure correction is needed. 
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Figure 14. Probablity of recovery for random sampling with a memoryless 

channel and 8 measurements per packet. 


